

ENGINEERING STRUCTURAL CALCULATIONS For Gillette 68" Frame Genset

September 8, 2016

68" Frame Genset Models:

PR-250 SP-250 SP-300 SPJD-300

Designed with reference from: 2014 Florida Building Code 5th Edition with 2016 Supplements ASCE 7 - Minimum Design Loads for Buildings and Other Structures 2005 Aluminum Association Design Manual ANSI/AISC 360-05 Specifications for Structural Steel Buildings

CENSE 1111111 STATE OF C NAL

Project Information

Project Description - 180mph Windload Calculations Project Location - Customer - Mounting Location - Ground	Customer	-
---	----------	---

Enclosure Materials

Roof Panels	- 0.080 Aluminum Panel - 5052-H34
Wall Panels	- 0.062 Aluminum Panel - 5052-H34

Components

GenSet Manufacturer GenSet Size and Model Base

- Gillette Generators, Inc.
- 68" Frame
- Bent Aluminum Frame

Supported by - Base

Fasteners/Hardware

		Bolt Size	Grade/Finish
Panels	-	5/16" - 18	Grade 18-8/SS
Enclosure to Base	-	5/16" - 18	Grade 18-8/SS
			HE BA
			LICENSE
Specification Requireme	ents		NO. 64600
Wind Speed	- 180	mph (Greater of Design or Site)	A But X
Exposure Category	- D	······································	TATE OF
			FLORIDA
			1, SONAL EN

Enclosure Dimensions & Component Weights

Gillette 68" Frame Genset

Roof Style-Flat **Enclosure Dimensions (ft)** Wall Length (ft) Height (ft) 1 3 3.65 Х 2 3 3.65 х 3 6.84 х 3.65 4 6.84 3.65 х **Base Dimensions** Width (Wall 1/2 Side) 36 in = Length (Wall 3/4 Side) 68 in = Height 4 in = **Roof/Eave Information** Roof Pitch Angle -Degrees $(\theta) =$ 0.0 Eave/Roof Height h =3.65 **Structure Areas** $ft^2 =$ in² Walls 1/2 Area (w1) =11.0 1,577 _ in² Walls 3/4 Area (w3) =25.0 $ft^2 =$ 3,597 -Roof Area (R) =20.5 $ft^2 =$ 2,957 in² Base Side 1/2 (T1) =144.0 in2

Wall 1 Wall 3 Wall 4 Wall 2 Plan Wall 3 Wall 4 Wall 1/2 Elevation

Component Weights

(T3) =

272.0

in2

Base Side 3/4

Genset	=	0	lbs	(Varies, so will use zero to be conservative/most uplift to resist)
Enclosure	=	150	Ibs	(Based on Aluminum to be conserative/most uplift to resist)
Base Frame	=	100	lbs	(Based on Aluminum to be conserative/most uplift to resist)

、、、、、、//// CENSE Tew T. B Matthew T. Baldwin, P.E.

Florida License #64608

MWFRS Net Pressures

Gillette 68" Frame Genset

<u>Wind</u>

Directional Procedure method from ASCE 7 are utilized in these calculations

ASCE 7 are utilized in these calculations	S.			\vee
Enclosure Classification	-	Enclose	d	Wall 1
Exposure Category	-	D		
Basic Wind Speed	(V)	180	mph	Wall 3 Wall 4 Wind Direction 2
Wind Directionality Factors	(K _d)	0.85		Wall 2
Internal Pressure Coefficients	(GC_{pi})	± 0.18		Plan
Velocity Pressure Exposure Coefficient	(K_z)	1.03		
Roof Mean Height Above Ground Level	(z)	3.98	ft	Wall 3 Wall 4
Velocity Pressure	(q)	72.63	psf	Wall 1/2 Elevation

Wind Direction 1

					Enclos	sure				
			Wall #		Roof					
		1	1 2 3&4			3&4 Paral				
		I	1 2 3		2 3α4	(C_p)	(Distance Fi	rom Windward E	Edge)	(C _p)2
		Windward	Leeward	Side	0 to 1.8	1.8 to 3.7	3.7 to 6.8		$(O_p)^2$	
Background Response Factor	(Q)	0.98	0.98	0.97			0.98			
Gust Effect Factors	(G)	0.92	0.92	0.91			0.92			
External Pressure Coefficients	(C _p)	0.80	-0.286	-0.70	-0.91	-0.89	-0.51		-0.18	
Net Pressures with + (GC_{pi}) - psf	(Net _{p+})	40.1	-32.1	-59.5	-73.5	-72.0	-47.2		-25.0	
Net Pressures with - (GC pi) - psf	(Net _{p-})	66.3	-5.9	-33.3	-47.4	-45.9	-21.1		1.1	

Wind Direction 2

		Wall #			Enclosure Roof - Normal To Ridge					
		3 4 182						1		
		Windward	Leeward	Side	$(C_p)1$ 0 to 1.8	(Distance I > 1.8	From Windward	I Edge)	(C _p)2	
Background Response Factor	(Q)	0.97	0.97	0.98			0	.97		
Gust Effect Factors	(G)	0.91	0.91	0.92			0	.91		
External Pressure Coefficients	(C _p)	0.80	-0.5	-0.70	-1.04	-0.70			-0.18	
Net Pressures with + (GC_{pi}) - psf	(Net _{p+})	39.9	-46.2	-59.6	-82.0	-59.5			-25.0	
Net Pressures with - (GC_{pi}) - psf	(Net _{p-})	66.1	-20.1	-33.5	-55.8	-33.3			1.1	

Plus and minus signs signify pressures acting toward or away from the surfaces, respectively.

******* TILLEW COROLINI CENSE STATE OF nP \cap ଓ NONAL EN

Wind Direction 1

ĮĻ

Structural Calculations - Roof

Gillette 68" Frame Genset

Critical Loads & Pressures

Wind Pressures

Downforce	1.146	psf	=	0.01	psi
Uplift	-81.99	psf	=	-0.57	psi

Section Properties

Modulus of Elasticity	(E)	=	1.02E+	+04	ksi	
Safety Factor	=	1.95	5			
Safety Factor	(n _y)	=	1.65	5		
Coefficient	pefficient (k _t)					
Tensile Ultimate Strength			(F _{tu})	=	34	ksi
Tensile Yield Strength			(F_{ty})	=	26	ksi
Compressive Yield Strength			(F_{cy})	=	24	ksi
Shear Ultimate Strength			(F _{su})	=	20	ksi

Entire Roof Uplift Calculations

Roof Area

Area of Roof Subjected to Uplife	t	(R) =	2,957	in ²	
Roof Uplift Calculated Forces	<u>i</u>				
Wind Load Uplift Force (w_{ru})	=	-1,683	lbs		
Total Roof Design Uplift (W_{ru})	=	<u>-1,683</u>	lbs		
Mounting Hardware - Roof Frame to V	Vall	Panels			
Screws Along Length - 1 Side	=	5	5/1	6" - 18	-
Screws Along Width - 1 Side	=	2	5/1	6" - 18	-
Total Mounting Screws	=	14	5/1	6" - 18	-
Entire Roof Uplift Design Cale	cul	ations			
Grade 18-8/SS	=	150,000	psi		
5/16" Bolt Nominal Diameter	=	0.255	in		
5/16" Bolt Effective Area	=	0.051	in ²		
5/16" Bolt Threads per Inch	=	18			
Washer Nominal Diameter	=	0.875	in		
Wall Panel Tensile Ult. Strength	=	34	ksi		
Wall Panel Tensile Yield Strength	=	26	ksi		
Safety Factor	=	3			
Wall Panel Nominal Thickness	=	0.062	in		
Maximum Tensile Strength	=	439.2	lbs		
Maximum Shear/Bearing Strength	=	408.6	lbs		
Max. Shear Load per Screw	=	408.6	lbs		
Max. Total Screws Shear Strength		$(P_{ts}) =$	<u>5,720</u>	lbs	

 (P_{ts})

lbs <

NO. 64660 NO. 64660 ROSTATE OF FLORIDA

Grade 18-8/SS Grade 18-8/SS

Grade 18-8/SS

Matthew T. Baldwin, P.E. Florida License #64608

Conc	lusion	

(W_{ru}) 1,683

5,720 lbs Page 4 - 1

1

<u>0K</u>

Roof Panel Uplift Calculations

Roof Panel Critical Member Dimensions	<u>2</u>
0	n n
Roof Panel Uplift Calculated Forces	
Distributed Loads	
Wind Load Uplift Force $(w_{pu}) = 1.393$.	<u>.9</u> lbs
Mounting Hardware - Roof Panel to Roof Frame	
Screws Along Length - 1 Side = 7	5/16" - 18 - Grade 18-8/SS
Screws Along Width - 1 Side = 3	5/16" - 18 - Grade 18-8/SS
Roof Panel Uplift Design Calculations	
Grade 18-8 Ultimate Strength = 150,00	00 psi
5/16 Bolt Nominal Diameter = 0.255	5 in
5/16 Bolt Effective Area = 0.051	l in ²
5/16 SBolt Threads per Inch = 18	
Washer Nominal Diameter = 0.875	5 in
Roof Panel Tensile Ult. Strength = 34	ksi
Roof Panel Tensile Yield Strength = 26	ksi
Safety Factor = 3	
Roof Panel Nominal Thickness = 0.080) in
Roof Fra	Ime
Maximum Tensile Strength = 439.2	2 lbs (Accounts for screw pull-over strength)
Maximum Shear/Bearing Strength = 408.6	6 lbs
Max. Tensile Load per Screw = 408.6	3 Ibs
Max. Total Screws Tensile Strength (P_{ts})	= <u>8,171</u> <u>lbs</u>
Conclusion	
(w _{pu}) 1,394 lbs < (P _{ts}) 8,171	l lbs <u>OK</u>

Structural Calculations - Walls/Columns

Gillette 68" Frame Genset

Critical Wind Load Pressures and Roof Forces

Walls 1 & 2

Maximum Pressures Acting:

Toward	66.3	psf	= 0.4602 p	osi
Away	-59.6	psf	= -0.4140 p	osi

Walls 3 & 4

Maximum Pressures Acting:

Toward	66.1	psf	= 0.4589 ps	si
Away	-59.5	psf	= -0.4129 ps	si

Critical Wall Panel Dimensions

Critical/Maximum Panel Width	=	33.5	in
Critical/Maximum Panel Height	=	42.0	in

Section Properties

0.062 Aluminum Panel - 5052-H34

Cross Sectional Area	(A)	=	2	.21	in ²	
Moment of Inertia - x	(I_x)	=	0	.05	in ⁴	
Section Modulus - x	(S _x)	=	0	.81	in ³	
Radius of Gyration - x	(r_x)	=	0	.15	in	
Modulus of Elasticity	(E)	=	1.	.02E	+04	ksi
Safety Factor	(n _u)	=	1	.95		
Factor of Safety	(n _y)	=	1	.65		
Coefficient - Tension Memb	er (k	t)	=	1.0		
Tensile Ultimate Strength	(F	tu)	=	34	ksi	
Tensile Yield Strength	(F	_{ty})	=	26	ksi	
Shear Ultimate Strength	(F	su)	=	20	ksi	
Compressive Yield Strength	ר <i>(F</i>	_{cy})	=	23	ksi	

Critical Wall Panel Calculated Forces

Maximum Wind Pressure on Walls

Maximum + Wind Pressure	=	0.4602	psi
Maximum - Wind Pressure	=	-0.4140	psi

Plus and minus signs signify pressures acting toward or away from the surfaces, respectively.

Wind Shear Distributed Loads on Critical Panel

Maximum + Wind Shear	=	15.4	lbs/in
Maximum - Wind Shear	=	-13.9	lbs/in

Total Wind Shear on Critical Panel

Total Panel Design Shear (V	$(_{ww}) =$	<u>647.5</u>	lbs
-----------------------------	-------------	--------------	-----

Critical Panel Roof Load (Roof to Wall)

Axial Roof Load (W_{wr}) :	= 0.0 lbs
------------------------------	-----------

Mounting Hardware - Wall Panel to Wall Panel

To be conservative, the 'wall to roof' and 'wall to floor' connections are negleted.						
Bolts Along Length - 1 Side	=	3	5/16" - 18	- Grade 18-8/SS		
Total Mounting Screws	=	6	5/16" - 18	- Grade 18-8/SS		

Wall Panel Design Calculations

Mounting Hardware - Shear and Tension

Grade 18-8/SS	=	150,000	psi	
Grade 18-8/SS Shear Strength	=	30,000	psi	(Includes Reduction Factor)
Grade 18-8/SS Tensile Strength	ו =	57,000	psi	(Includes Reduction Factor)
5/16" Bolt Effective Area	=	0.0510	in ²	
Shear Strength per Bolt	=	1,530	lbs	
Tensile Strength per Bolt	=	2,907	lbs	
Total Bolts Shear Strength (A	R _{vb}) =	= 9,180	lbs	
Total Bolts Tensile Strength ($R_{tb}) =$	= 17,442	lbs	
Conclusion				

(V_{ww})	647	lbs	< (R _{vb})	9.180	lbs	OK
(• ww)	0.17	100	< (··v/)	0,100	100	

NO. 64600 STATE OF FLORIDA STATE OF FLORIDA STATE OF STONAL ENGINE

Structural Calculations - Enclosure to Base

Gillette 68" Frame Genset

Critical Pressures & Loads

To determine maximum moment forces, pressures are algebraically combined relative to toward or away forces (+ & -) and each wind direction.

Wind Direction 1

Net Pressures with + Internal Pressure(+Gcpi)

Walls 1 & 2 -	72.2	psf =	0.5014	psi
Wall 3 or 4 -	59.5	psf =	0.4129	psi
Roof Uplift -	73.5	psf =	0.5107	psi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 1 & 2 -	-	72.2	psf =	0.5014	psi
Wall 3 or 4 -		33.3	psf =	0.2313	psi
Roof Uplift -		47.4	psf =	0.3291	psi

Wind Direction 2

Net Pressures with + Internal Pressure(+Gcpi)

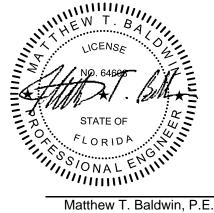
Walls 3 & 4 -	86.1	psf =	0.5982	psi
Wall 1 or 2 -	59.6	psf =	0.4140	psi
Roof Uplift -	82.0	psf =	0.5694	psi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 3 & 4 -	86.1	psf =	0.5982	psi
Wall 1 or 2 -	33.5	psf =	0.2324	psi
Roof Uplift -	55.8	psf =	0.3878	psi

Enclosure Critical Dimensions & Weights

Total Enclosure	Weight	(W_t)	=	150	lbs
Walls 1/2 Area	-	(w1)	=	1576.8	in ²
Walls 3/4 Area	-	(w3)	=	3597.1	in ²
Roof Area	-	(R)	=	2956.5	in²


Enclosure Calculated Forces

Maximum Wind Load Forces on Walls

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Walls 1/2 -	=	791	lbs
Wall 3 or 4 -	=	1,485	lbs
Roof Uplift -	=	1,510	lbs

Florida License #64608

(Includes all components)

Net Forces with - Internal Pressure(-Gcpi)

Walls 1/2 -	=	791	lbs
Wall 3 or 4 -	=	832	lbs
Roof Uplift -	=	973	lbs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Walls 3/4 -	=	2,152	lbs
Wall 1 or 2 -	=	653	lbs
Roof Uplift -	=	1,683	lbs

Net Forces with - Internal Pressure(-Gcpi)

Walls 3/4 -	=	2,152	lbs
Wall 1 or 2 -	=	366	lbs
Roof Uplift -	=	1,147	lbs

Enclosure Overturn Forces

(Postive forces act upward, negative forces act downward)

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 1/2	=	816	lbs	
Overturn on Walls 3/4	=	1,508	lbs	
Net Forces with - Internal Pre	essur	e <i>(-Gcpi)</i>		
Overturn on Walls 1/2	=	547	lbs	
Overturn on Walls 3/4	=	843	lbs	
Wind Direction 2				
Net Forces with + Internal Pressure(+Gcpi)				

Overturn on Walls 3/4	=	2,001	lbs
Overturn on Walls 1/2	=	941	lbs

Net Forces with - Internal Pressure(-Gcpi)

Overturn on Walls 3/4	=	1,732	lbs
Overturn on Walls 1/2	=	521	lbs

<u>Design Overturn Force</u> $(O_E) = 2.001$ Ibs Acting On Wall 3/4

Mounting Hardware - Enclosure to Base/Tank or Pad

To be conservative, half the bolt connections along the adjacent walls are neglected. No. of Bolt Connections Along Wall 3/4 = 5 5/16" - 18 - Grade 18-8/SS

Enclosure Overturn Design Calculations

Grade 18-8 Ultimate Strength	=	150,000	psi	
Grade 18-8 Shear Strength	=	30,000	psi	(Includes Reduction Factor)
5/16" Bolt Effective Area	=	0.051	in ²	
Shear Strength per Bolt	=	1,530	lbs	
Total Bolts Shear Strength		$(R_{vb}) =$	7,6	50 lbs

Conclusion

 (O_E) 2,001 lbs < (R_v) 7,650 lbs

OK Page 6 - 2

